- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Ackley, Kendall (1)
-
Aryan, Amar (1)
-
Bae, Hana (1)
-
Bauer, Franz E (1)
-
Bloemen, Steven (1)
-
Bom, Clécio R (1)
-
Burhonov, Otabek (1)
-
Burns, Eric (1)
-
Chacón, Jennifer A (1)
-
Chambers, Ken (1)
-
Chen, Ting-Wan (1)
-
Choi, Changsu (1)
-
Chrimes, Ashley A (1)
-
De_Pasquale, Massimiliano (1)
-
D’Elia, Valerio (1)
-
Ehgamberdiev, Shuhrat (1)
-
Eyles-Ferris, Rob_A J (1)
-
Fong, Wen-fai (1)
-
Fryer, Christopher L (1)
-
Fulton, Michael D (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract With a small sample of fast X-ray transients (FXTs) with multiwavelength counterparts discovered to date, their progenitors and connections toγ-ray bursts (GRBs) and supernovae (SNe) remain ambiguous. Here, we present photometric and spectroscopic observations of SN 2025kg, the SN counterpart to the FXT EP 250108a. Atz= 0.17641, this is the closest known SN discovered following an Einstein Probe (EP) FXT. We show that SN 2025kg’s optical spectra reveal the hallmark features of a broad-lined Type Ic SN. Its light-curve evolution and expansion velocities are comparable to those of GRB-SNe, including SN 1998bw, and two past FXT-SNe. We present JWST/NIRSpec spectroscopy taken around SN 2025kg’s maximum light, and find weak absorption due to HeI1.0830μm and 2.0581μm and a broad, unidentified emission feature at ∼4–4.5μm. Further, we observe broadened Hαin optical data at 42.5 days that is not detected at other epochs, indicating interaction with H-rich material. From its light curve, we derive a56Ni mass of 0.2–0.6M⊙. Together with our companion Letter, our broadband data are consistent with a trapped or low-energy (≲1051erg) jet-driven explosion from a collapsar with a zero-age main-sequence mass of 15–30M⊙. Finally, we show that the sample of EP FXT-SNe supports past estimates that low-luminosity jets seen through FXTs are more common than successful (GRB) jets, and that similar FXT-like signatures are likely present in at least a few percent of the brightest Type Ic-BL SNe.more » « lessFree, publicly-accessible full text available July 16, 2026
-
Lim, Gu; Im, Myungshin; Paek, Gregory S.; Yoon, Sung-Chul; Choi, Changsu; Kim, Sophia; Wheeler, J. Craig; Thomas, Benjamin P.; Vinkó, Jozsef; Kim, Dohyeong; et al (, The Astrophysical Journal)Abstract The progenitor system of Type Ia supernovae (SNe Ia) is expected to be a close binary system consisting of a carbon/oxygen white dwarf (WD) and a nondegenerate star or another WD. Here, we present results from high-cadence monitoring observations of SN 2021hpr in a spiral galaxy, NGC 3147, and constraints on the progenitor system based on its early multicolor light-curve data. First, we classify SN 2021hpr as a normal SN Ia from its long-term photometric and spectroscopic data. More interestingly, we found a significant “early excess” in the light curve over a simple power-law ∼ t 2 evolution. The early light curve evolves from blue to red to blue during the first week. To explain this, we fitted the early part of the BVRI -band light curves with a two-component model consisting of ejecta–companion interaction and a simple power-law model. The early excess and its color can be explained by shock-cooling emission due to a companion star having a radius of 8.84 ± 0.58 R ⊙ . We also examined Hubble Space Telescope preexplosion images, finding no detection of a progenitor candidate, consistent with the above result. However, we could not detect signs of a significant amount of stripped mass from a nondegenerate companion star (≲0.003 M ⊙ for H α emission). The early excess light in the multiband light curve supports a nondegenerate companion in the progenitor system of SN 2021hpr. At the same time, the nondetection of emission lines opens the door for other methods to explain this event.more » « less
An official website of the United States government
